Кроме того, что датчики контроля пламени занимаются обеспечением безопасной работы топки, они также принимают участие и при розжиге огня. Этот этап может осуществляться в автоматическом или же полуавтоматическом режиме. Во время работы в этом же режиме они следят за тем, чтобы топливо сгорало с соблюдением всех требуемых условий и защиты. Другими словами, постоянное функционирование, надежность, а также безопасность работы топочных печей полностью зависят от правильной и безотказной работы датчиков контроля пламени.
Методы контроля
На сегодняшний день разнообразие датчиков позволяет применять различные методы контроля. К примеру, чтобы контролировать процесс сжигания топлива, находящегося в жидком или газообразном состоянии, можно использовать методы прямого и косвенного контроля. К первому методу можно отнести такие способы, как ультразвуковой или же ионизационный. Что касается второго метода, то в данном случае датчики реле-контроля пламени будут контролировать немного другие величины – давление, разрежение и т.д. На основе полученных данных система будет делать вывод о том, подходит ли пламя под заданные критерии.
К примеру, в газовых нагревателях небольшого размера, а также в отопительных котлах отечественного образца используются приборы, которые основаны на фотоэлектрическом, ионизационном или же термометрическом методе контроля пламени.
Термопара в газовой плите: принцип работы + инструктаж по замене устройства
Готовить на газовой плите или работающей на газу варочной поверхности так же просто, как на обычных электрических конфорках. Даже использование газового духового шкафа какие-либо проблемы вызывает крайне редко. Но у многих сразу встает вопрос о безопасности такого оборудования, ведь «голубое топливо» взрывоопасно.
Увидеть свое жилье разрушенным в результате взрыва газообразного горючего вряд ли кому хочется. Чтобы предотвратить подобную трагедию, применяется такое устройство, как термопара в газовой плите. Она представляет собой основной элемент системы контроля исправности самого популярного газового прибора.
Согласитесь, что в случае с природным газом теме снижения рисков пожаров и взрывов уделять приходится особое внимание. В представленном нами статье приведены и детально описаны правила эксплуатации бытового оборудования, перерабатывающего газ. полезную информацию мы дополнили ценными рекомендациями.
Зачем газовой плите термопара?
Газ в горелке плиты разжигается спичками, ручной пьезозажигалкой либо встроенным электроподжигом. Потом пламя должно гореть само без участия человека, пока топливо не будет перекрыто вентилем.
Однако нередко огонь на газовой варочной панели или в духовке гаснет в результате порыва ветра либо выплеска воды из закипевшей кастрюли. И тогда, если рядом в кухне никого нет, метан (либо пропан) начинает поступать в помещение. В итоге при достижении определенной концентрации газа происходит хлопок с пожаром и разрушениями.
Рабочая функция термопары – контроль наличия пламени. Пока газ горит, температура на кончике контрольного устройства доходит до 800–1000 0 С, а нередко и выше. В результате возникает ЭДС, которая держит газовый электромагнитный клапан на патрубке к горелке в открытом состоянии. Конфорка работает.
Однако при исчезновении открытого огня термопара перестает выдавать ЭДС на электромагнит. Происходит перекрытие крана и подачи топлива. В итоге газ не попадает в кухню, не скапливаясь в ней, что и исключает возникновение пожара от подобной нештатной ситуации.
Термопара – это простейший температурный датчик без каких-либо электронных устройств внутри. В нем нечему ломаться. Он может лишь прогореть от длительного использования.
С полным набором датчиков, предназначенных для контроля и безопасности работы газовой колонки, ознакомит следующая статья, полностью посвященная этому интересному вопросу.
Среди достоинств термопар:
- простота устройства и отсутствие ломающихся механических или перегорающих электрических элементов;
- дешевизна прибора – порядка 800–1500 рублей в зависимости от модели газовой плиты;
- длительный срок эксплуатации;
- высокая эффективность контроля температуры пламени;
- быстрое перекрытие газа;
- простота замены, которую можно выполнить своими руками.
Сколько-либо значимый недостаток у термопары один – сложность ремонта прибора. Если термопарный датчик неисправен, то его проще заменить на новый.
Чтобы отремонтировать подобное устройство, необходимо сварить или спаять при высокой температуре (около 1 300 0 С) два разных металла. В быту дома добиться таких условий крайне сложно. Гораздо проще под замену купить новый контрольный блок для газовой плиты.
Устройство и принцип работы
В основе работы термопары лежит термоэлектрический эффект Зеебека. Согласно нему, на концах соединенных последовательно проводников из разных металлов при условии, что их контакты находятся под разной температурой, возникает термо-ЭДС (ТЭДС).
То есть необходимо наличие двух разных по составу проводников, которые способны выдерживать сильный нагрев, и высокотемпературное тепло (в рассматриваемом случае от сгораемого природного газа) в точке их соединения.
В большинстве пар возникающая между холодным и горячим контактами электродвижущая сила совсем мала и малоприменима. Но есть металлы и сплавы, совмещение которых дает до 4–5 мВ/100 0 С. А этого уже вполне достаточно для управления электромагнитом, контролирующим тот или иной затвор.
Принцип работы термопар, вмонтированных в газовые плиты, предельно прост:
- Есть пламя – между контактами возникает ТЭДС, клапан на подаче газа в конфорку открыт.
- Нет огня – ТЭДС исчезает, клапан под давлением пружины закрывается и перекрывает газ.
Состоит термопара из двух термостабильных проводников длиной до полутора метров, которые на одном конце соединены пайкой или сваркой.
Именно этот кончик находится непосредственно в огне и нагревается от горящего газа. Второй конец прибора представляет собой пару контактов либо разъем для подключения к электромагнитному клапану.
Разновидности термодатчиков для газа
Термопары газовых плит различаются по сплаву проводников и типу подсоединения к клапану. И главное здесь – каждый производитель оборудования на газу использует свои варианты электромагнитов с разными разъемами подключения.
В большинстве случаев переставить термопарный датчик газконтроля с одно плитки на другую невозможно.
Сплавы и металлы для создания термопар используются следующие:
- константан+хромель;
- медь+константан;
- медь+копель;
- нисил+нихросил;
- алюмель+хромель;
- константан+железо;
- хромель+копель;
- платинородий+платина;
- вольфрам+рений.
От используемых сплавов зависит точность устройства и диапазон его рабочих температур. Например, хромель-алюмелевая термопара рассчитана на работу при 0–1100 0 С, железо-константантная при 0–700 0 С, а платино-платинородиевая выдерживает нагрев до +1700 0 С.
В бытовых газовых плитах обычно применяются термопарные датчики из алюмеля и хромеля либо константана и железа. Они недороги и вполне подходят для температурных условий варочной панели на газу.
Руководство по ремонту газконтроля
Если газ на плите гаснет, то проблема может крыться не только в термопаре. Однако чаще всего дело именно в ней.
Основной признак проблем с газконтролем – после розжига конфорки и отпускания ручки или кнопки открытия «голубого топлива» пламя сразу тухнет. Это происходит из-за перекрытия клапана, так как термо-ЭДС для поддержания его открытым отсутствует либо недостаточна.
Причины шума конфорок газовых плит подробно изложены в статье, с полезной информацией которой стоит ознакомиться.
Самостоятельно выполнять проверку, производить ремонт и замену термопары в газовой плите своими руками следует только при полном перекрытии газа. Сначала необходимо закрыть вентиль на баллоне с газовой смесью или трубе с метаном, а только потом приступать к каким-либо работам. Также не стоит забывать об отключении электроснабжения, если в конструкции есть энергозависимые приборы.
Наконечник термопары располагается непосредственно возле конфорки и газового огня. А в духовке его найти можно возле рассекателя пламени в верхней части духового шкафа. Этот кончик должен быть без нагара, минеральных отложений и каких-либо повреждений.
Если рабочий наконечник термопарного датчика покрыт окалиной, то ее в обязательном порядке следует счистить наждачной бумагой. Чем больше нагара, тем меньше тепла доходит до термопары, а тем меньше она соответственно создает ЭДС. Полученных милливольт может банально не хватать для открытия электромагнитного клапана.
Как проверить перед заменой?
Термопара обычно имеет один наконечник для установки возле огня. Но есть и варианты с двумя или тремя кончиками контроля температуры. Их обычно используют в духовках, однако все зависит от конкретной модели плиты.
У термопар с несколькими рабочими наконечниками имеется особенность – если лишь один из них не нагрет или вышел из строя, то электромагнитный клапан окажется закрыт. Поэтому, чтобы точно найти причину проблем, подобные термопарные устройства проверять придется особенно внимательно. Неисправным может быть лишь один из датчиков.
Еще один момент – проводники термопары на участке до клапана должны быть натянуты или болтаться в корпусе плиты. При этом их подсоединение к электромагниту должно быть жестким, висящий «на честном слове» разъем здесь недопустим.
Выпускаются рассматриваемые устройства с длиной от 40 до 130 см. Выбирать по этому показателю термопарный прибор газконтроля следует очень внимательно. С одной стороны проволоку проводников нельзя излишне натягивать, а с другой она не должна лежать на нагреваемых поверхностях или свободно болтаться.
Приборы контроля наличия пламени.
Методы контроля наличия пламени при сжигании в топках котлов газа и жидкого топлива можно подразделить на две разновидности: прямого и косвенного контроля. К методам прямого контроля относятся ультразвуковой, термометрический, ионизационный и наиболее часто применяемый фотоэлектрический. К методам косвенного контроля горения топлива можно отнести контроль за разрежением в топке, за давлением топлива в подающем трубопроводе, за давлением или перепадом его перед горелкой и контроль за наличием постоянного источника воспламенения.
В отечественных отопительных котлах, газовых калориферах и малых газовых нагревателях применяют приборы, которые основаны на ионизационном, фотоэлектрическом и термометрическом методах контроля. Ионизационный метод контроля основан на электрических процессах, возникающих и протекающих в пламени. К таким процессам можно отнести способность пламени проводить ток, выпрямлять переменный ток и возбуждать в электродах, помешенных в пламя, собственную э.д.с., а также периодическую пульсацию электрических колебаний в пламени, что во всех случаях обусловливается степенью ионизации пламени.
Фотоэлектрический метод контроля за горением жидкого топлива заключается в измерении степени видимого и невидимого излучения пламени фотодатчиками как с внешним, так и с внутренним фотоэффектом. Методы контроля наличия пламени нашли много конструктивных решений.
Термоэлектрический метод контроля. Устройство, основанное на термоэлектрическом методе контроля, состоит из термопары — датчика и электромагнитного клапана. Термопара помещена в зоне горения запальной горелки котла, а электромагнитный клапан установлен на газопроводе, по которому подается газ в запальную горелку.
Большое распространение получило устройство термоэлектрического контроля, разработанное институтом Мосгазпроект. Оно применяется в отопительных и пищеварочных котлах, газовых отопительных печах и емкостях водонагревателей. Принцип работы термоэлектрического устройства контроля пламени заключается в следующем. Запальная горелка действует постоянно, обеспечивая надежное зажигание и работу основных рабочих горелок. Газ на запальной горелке воспламеняется от термопары и обеспечивает защиту против отрыва пламени. Термопара вырабатывает э.д.с., за счет которой удерживается в открытом состоянии электромагнитный клапан.
При погасании пламени горелки температура термопары понизится настолько, что возбуждаемая ею э.д.с. будет недостаточна для удержания якоря в открытом положении, в результате чего клапан под действием пружины закроет поступление газа в запальник и горелку котла. Последующий розжиг котла может быть произведен только вручную после ликвидации причин, вызванных отключением подачи газа.
Ионизационный метод контроля. Ионизационный метод наличия пламени основан на использовании электрических свойств пламени. Устройства безопасности, основанные на этом методе, обладают преимуществом, состоящим в том, что они практически безынерционны,так как при погасании контролируемого пламени ионизационные процессы прекращаются, и это приводит практически к мгновенному отключению подачи газа в горелки котлоагрегата. Этот метод позволил разработать приборы контроля, основанные на электропроводности пламени, возникновении э.д.с. пламени, его вентильном эффекте и электрической пульсации. За рубежом уделяется наибольшее внимание методу контроля наличия пламени, основанному на вентильном эффекте.
В устройствах безопасности горения, где используется этот метод, не наблюдается ложного сигнала при замыкании в цепи датчиков.В системе комплексной автоматики для отопительных котлов был применен прибор контроля пламени, работа которого основана на вентильном эффекте. При наличии пламени переменное напряжение, приложенное между введенным в пламя электродом и корпусом горелки, выпрямляется.
При погасании пламени действие вентильного эффекта в межэлектродном переходе прекращается и управляющий сигнал на вход усилителя не поступает. Правая часть лампы запирается, реле обесточивается и дает команду на отключение газа. Аналогичное действие произойдет при замыкании электрода на корпус горелки.
Основным недостатком схемы прибора является то, что в ней открытое (рабочее) положение правой части триода обеспечивается закрытием левой его части. Метод контроля, использующий электрический потенциал пламени.Этот метод основан на введении в факел металлических электродов, которые дают разность потенциалов (э.д.с.), переменных по амплитуде, но постоянных по знаку. Величина э.д.с. пропорциональна разности температур между электродами и достигает 2 В. На этом принципе был создан прибор. Принцип работы прибора э.д.с. заключается в следующем при отсутствии пламени в анодных цепях лампы текут равные токи. Возникающий в обмотках реле Р1 и Р2 под действием тока магнитный поток равен нулю, так как обмотки поляризованного реле включены встречно. Якорь Реле в этом случае находится в положении, при котором цепь питания электромагнитного клапана-отсекателя разорвана, и газ в горелку не поступает. При появлении пламени возникает отрицательная э.д.с., которая подается на сетку левой части триода, что приводит к уменьшению тока в обмотке Р1. Под действием результирующего магнитного поля якорь реле изменит свое положение и, замкнув контакты, даст соответствующую команду. При погасании пламени или замыкании в цепи датчика э.д.с. исчезнет и схема придет в исходное положение.
Метод контроля, использующий электрическую пульсацию пламени. Для любого факела независимо от вида сжигаемого топлива и типа горелочного устройства характерным признаком является пульсация процессов, сопровождающих горение. К таким процессам относятся температура пламени, давление в камере сгорания, интенсивность излучения и ионизация факела пламени. Частота и амплитуда пульсаций зависят от скорости истечения газовоздушной смеси из горелки и условий перемешивания газа с воздухом. При неудовлетворительном перемешивании газа с воздухом горение сопровождается отдельными вспышками. Посредством чувствительного гальванометра можно замерить величину пульсации ионизационного тока. Это свойство пламени дает возможность обеспечить самоконтроль автоматики от опасного замыкания в цепи электродного датчика.
В схеме используется собственный пульсирующий потенциал, возникающий на электродах. При включении в цепь ионизационного датчика источника постоянного тока пульсацию на электродах можно усилить. В любом случае при замыканиях в цепи датчика, а также при погасании пламени подача управляющего сигнала на вход усилителя прекращается, и автоматика срабатывает на отключение газа. От сигнала постоянного тока данная схема не работает, так как на входе первого каскада включен конденсатор. Приборы контроля пламени этого типа, работающие на переменной составляющей электрического сигнала, очень чувствительны к помехам, частота колебания которых близка к частоте пульсации факела. Вследствие этого при установке таких приборов на объектах требуется обязательная экранировка входных цепей усилителя и линий связи, соединяющих электродный датчик с прибором.
Запальная горелка инжекционная ЗИГ-ХХ
НАЗНАЧЕНИЕ
Розжиг основных горелок или работа в режиме пилотной горелки в печах, котлах, энергоагрегатах любой мощности.
ОСОБЕННОСТИ
- Обеспечивают надежный розжиг горелок любой мощности—различные длины и типоразмеры подходят под любые типы горелок
- Мощный и стабильный факел устойчивый к отрыву
- Любой тип топливного газа при разных давления
- Нечувствительность к изменениям противодавления
- Высокая энергия розжига
- Нечувствительность к влажности
- Конструкция из нержавеющей стали
- Тип топливного газа – природный газ, пропан, попутный газ, газ НПЗ
- Легкая установка—под все типы установочных труб
- Работа на котлах с естественной, принудительной или смешанной тяге
- Прочная конструкция
- Встроенное устройство розжига и контроля погасания факелаПРИМЕНЕНИЕ
- Котельные, энергетические котлы ТЭЦ, ГРЭС
- Печи нефтехимических, металлургических производств
ЗАПАЛЬНАЯ ГОРЕЛКА–предназначена для розжига основной горелки, работает в кратковременном режиме и выключается после стабилизации пламени основной горелки.
ПИЛОТНАЯ ГОРЕЛКА — используются для поддержания пламени основной горелки, работает в постоянном режиме. В этом случае нет необходимости использования датчика пламени основной горелки.
УСТРОЙСТВО
ЗИГ представляет собой инжекционную горелку, в корпус которой помещены ионизационный датчик пламени и высоковольтный электрод розжига. Присоединение газа – штуцер D-15мм.
Состоит из смесительной камеры 1, со штуцером подачи газа D-15mm, наружной трубы (ствол запальника). Ствол запальника может быть легко снят для осуществления регламентных работ.
Внутри ствола запальника размещены высоковольтный поджигающий электрод розжига 4, ионизационный датчик пламени 6, газовые трубки 5 (2шт), с установленными в них газовыми сменными форсунками.
Монтажный фланец 3 является подвижным, с его помощью можно регулировать длину погружения горелки.
ПРИНЦИП РАБОТЫ
Основной принцип работы состоит в создании горючей смеси из воздуха и газа, которая поджигается встроенной высоковольтной свечой. Через штуцер, газ проходит в основную газовую трубу и подается на сопла. В сопле с небольшим отверстием скорость газа возрастает. Непосредственно после сопла создается разрежение за счет скоростного потока газа. Окружающий воздух засасывается в горелку через отверстия в корпусе горелки, за счет разрежения в топке, и смешивается с газом, создавая газовоздушную смесь.
Высоковольтная свеча воспламеняет основную часть этой смеси, пламя появляется непосредственно за срезом горелки.
Контроль горения
Контроль горения осуществляется ионизационным электродом пламени, от него на сигнализатор пламени поступает сигнал постоянного тока.
Монтажный фланец
Варианты установки запальных горелок
Типовая схема подвода газа к запальной горелке
Фотоэлектрический метод
На сегодняшний день наиболее часто применяется именно фотоэлектрический способ контроля. В таком случае приборы контроля пламени, в данном случае это фотодатчики, фиксируют степень видимого и невидимого излучения пламени. Другими словами, аппаратура фиксирует оптические свойства.
Что касается самих приборов, то они реагируют на изменение интенсивности поступаемого потока света, которое выделяет пламя. Датчики контроля пламени, в данном случае фотодатчики, будут отличаться друг от друга по такому параметру, как длина волны, получаемой от пламени. Очень важно учитывать данное свойство при выборе прибора, так как характеристика спектрального типа пламени сильно отличается в зависимости от того, какой тип топлива сжигается в топке. Во время сгорания топлива существует три спектра, в котором формируется излучение – это инфракрасный, ультрафиолетовый и видимый. Длина волны может быть от 0,8 до 800 мкм, если говорить об инфракрасном излучении. Видимая же волна может быть от 0,4 до 0,8 мкм. Что касается ультрафиолетового излучения, то в данном случае волна может иметь длину 0,28 – 0,04 мкм. Естественно, что в зависимости от выбранного спектра, фотодатчики также бывают инфракрасными, ультрафиолетовыми или датчиками светимости.
Однако у них есть серьезный недостаток, который кроется в том, что у приборов слишком низкий параметр селективности. Это особенно заметно, если котел обладает тремя или более горелками. В таком случае велик шанс возникновения ошибочного сигнала, что может привести к аварийным последствиям.
цифровая электроника вычислительная техника встраиваемые системы
Arduino и датчик огня (датчик пламени) для пожарной сигнализации: схема подключения, код
Микроконтроллерная платформа Arduino широко используется в различных охранных устройствах и проектах для реализации сигнализаций, в том числе и противопожарных.
В данном примере мы рассмотрим, как с помощью Arduino взаимодействовать с инфракрасным датчиком огня, чтобы с его помощью собрать своими руками пожарную сигнализацию.
Датчик огня (пламени) – это датчик, предназначенный для обнаружения и реагирования на наличие пламени или огня. Ответный сигнал на обнаруженное пламя зависит от установки, но может включать сигнализацию, деактивацию топливной линии (например, пропан или линию природного газа) и активацию системы пожаротушения.
Существуют различные типы методов обнаружения пламени. Некоторые из них: детектор ультрафиолетового излучения, детектор около-инфракрасных лучей, инфракрасный (ИК) детектор, инфракрасные термокамеры, комбинированный ультрафиолетовый / ИК-детектор и т. д. Когда огонь горит, он излучает небольшое количество инфракрасного света, этот свет будет приниматься фотодиодом (ИК-приемником), размещенным на сенсорном модуле. Далее, как правило, используют операционный усилитель (с инверт.входом) для проверки изменения напряжения на ИК-приемнике, так что, если обнаружен пожар, выходная линия (DO) даст 0V (низкий уровень сигнала), и если нет огня, выходная линия будет в состоянии 5V ( высокий уровень сигнала).
В этом проекте мы используем инфракрасный датчик пламени. Он основан на датчике YG1006, который является высокоскоростным и высокочувствительным кремниевым фототранзистором типа NPN. Он может обнаруживать инфракрасный свет с длиной волны от 700 нм до 1000 нм, а угол его обнаружения составляет около 60°. Модуль датчика пламени состоит из фотодиода (ИК-приемника), резистора, конденсатора, потенциометра и компаратора LM393 в интегральной схеме. Чувствительность может регулироваться путем изменения встроенного в модуль потенциометра. Рабочее напряжение составляет от 3,3 В до 5 В постоянного тока, с цифровым выходом. Высокий уровень сигнала на выходе здесь указывает на наличие пламени или огня. Низкий указывает на отсутствие пламени или огня. Схема подключения Arduino к датчику пламени показана на рисунке ниже.
Помимо платы Arduino и датчика огня в схему добавлены элементы пожарной сигнализации: светодиод с токоограничивающим резистором для световой индикации и зуммер для звукового оповещения. Код программы для взаимодействия Arduino и датчика пламени приведен ниже. По высокому уровню сигнала мы включаем светодиод и зуммер, по низкому они должны быть отключены.
Метод ионизации
Вторым по популярности является метод ионизации. В данном случае основа метода – это наблюдение за электрическими свойствами пламени. Датчики контроля пламени в таком случае называют датчиками ионизации, а принцип их работы основан на том, что они фиксируют электрические характеристики пламени.
У данного метода есть довольно сильное преимущество, которое заключается в том, что метод практически не имеет инерции. Другими словами, если пламя гаснет, то процесс ионизации огня пропадает моментально, что позволяет автоматической системе тут же прекратить подачу газа к горелкам.
Надежность устройств
Надежность – это основное требование к данным приборам. Для того чтобы достичь максимальной эффективности работы, необходимо не только правильно подобрать оборудование, но еще и правильно его установить. В данном случае важно не только выбрать правильный метод монтажа, но и место крепления. Естественно, что любой тип датчиков обладает своими преимуществами и недостатками, однако если неверно выбрать место установки, к примеру, то вероятность возникновения ложного сигнала сильно увеличивается.
Если подвести итог, то можно сказать, что для максимальной надежности системы, а также для того, чтобы максимально сократить количество остановок котла по причине возникновения ошибочного сигнала, необходимо устанавливать несколько типов датчиков, которые будут использовать абсолютно разные методы контроля пламени. В таком случае надежность общей системы будет достаточно высокой.
Комбинированное устройство
Необходимость в максимальной надежности привела к тому, что были изобретены комбинированные датчики-реле контроля пламени Archives, к примеру. Основное отличие от обычного прибора в том, что устройство использует два принципиально разных метода регистрации – ионизационный и оптический.
Что касается работы оптической части, то в данном случае она выделяет и усиливает переменный сигнал, который характеризует протекающий процесс горения. Во время горения горелки пламя нестабильно и пульсирует, данные фиксируются встроенным фотодатчиком. Зафиксированный сигнал передается на микроконтроллер. Второй же датчик ионизационного типа, который может получать сигнал только при условии, что существует зона электропроводности между электродами. Данная зона может существовать лишь при наличии пламени.
Таким образом, получается, что устройство оперирует двумя разными способами контроля пламени.
Тема: Датчик пламени
Газовые горелки для универсальных котлов
Газовая горелка для твердотопливного котла отопления представляет собой довольно сложный агрегат. Она создана для перевода отопительного оборудования с одного вида топлива на другое. То есть, вы можете приобрести твердотопливный (универсальный) агрегат для работы на дровах, а при появлении газовой магистрали перевести его на работу с природным газом.
Обслуживание даже самой простой газовой горелки лучше всего доверить мастеру — услуги специалиста выйдут дешевле чем покупка нового агрегата.
Автоматическая газовая горелка для котла на твердом топливе построена по вентиляторной схеме. Сюда подается газ, смешивается с воздухом, после чего готовая топливно-воздушная смесь отправляется в форсунку. Здесь она поджигается, образуя высокотемпературный факел пламени. На борту горелки имеются мощный вентилятор, система автоматики, редуктор и газовый фильтр. Для работы агрегата требуется электроэнергия. Само изделие имеет модульную конструкцию (съемную).
Датчики маркировки СЛ-90
На сегодняшний день один из довольно универсальных фотодатчиков, который может регистрировать инфракрасное излучение пламени – это датчик-реле контроля пламени СЛ-90. Данное устройство обладает микропроцессором. В качестве основного рабочего элемента, то есть приемника излучения, выступает полупроводниковый инфракрасный диод.
Элементная база данного оборудования подобрана таким образом, чтобы устройство могло нормально функционировать при температуре от –40 до +80 градусов по Цельсию. Если использовать специальный охлаждающий фланец, то эксплуатировать датчик можно при температуре до +100 градусов по Цельсию.
Что касается выходного сигнала датчика контроля пламени СЛ-90-1Е, то это не только светодиодная индикация, но и контакты реле «сухого» типа. Максимальная коммутационная мощность данных контактов составляет 100 Вт. Наличие этих двух выходных систем позволяет использовать приспособление этого типа практически в любой системе управления автоматического типа.
Самодельная горелка для газового баллона. Газовая горелка своими руками: варианты для домашних дел
Хотите узнать, как сделать горелку своими руками в домашних условиях? Предлагаю сразу 2 инструкции: сборку обычной горелки для укладки кровельных материалов и изготовление высокотемпературного резака. Изготовив инструменты по предложенным схемам, вы сможете разогреть кровельный битум, плавить олово и резать легкоплавкие металлы.
Все, что нужно знать о газовых горелках
- Газовая горелка (ацетиленовая или пропановая) – это инструмент, с помощью которого можно получить пламя с изменяемыми температурой пламени и размером факела;
- Обычная пропановая горелка – это форсунка с регулятором, подключенная к подаче газа под давлением;
- Ацетиленовая горелка – это резак, для работы которого применяется газокислородная смесь.
Применяя в качестве топлива газ под давлением, получить высокую температуру не удастся. Но, если смешать пропан с кислородом, температура пламени увеличивается в разы.
На рисунке показаны горелки двух типов:
- Инжекторные — кислород за счет более высокого давления подсасывает газ и направляет к смесителю;
- Безынжекторные — кислород и газ подаются раздельно, но с одинаковым давлением.
Безынжекторные резаки конструктивно проще инжекторных горелок. Но инжекторные резаки, из-за высокого давления топливной смеси, используются при сварке и при резке металлов.
Есть еще инфракрасная газовая горелка, но она относится не к режущим инструментам, а к обогревателям. Нагревательный элемент для равномерного распределения тепла располагается излучателем к верху и трансформирует тепловую энергию в инфракрасное излучение. Регулировка температуры и интенсивности обогрева осуществляется настроечным вентилем.
Собираем за 10 минут горелку для укладки рубероида
Для сборки понадобится:
- Форсунка и кран со старой газовой плиты (и ту, и другую деталь можно купить на строительном рынке. Цена копеечная);
- Газовый баллон (можно обойтись походным баллоном с объемом 10-20 литров);
- Соединительный шланг с накидными хомутами.
Иллюстрация | Описание этапа |
Соединяем форсунку с краном. Подсоединяем кран через патрубок к форсунке. | |
Соединяем газовый баллон с горелкой шлангом. Соединения обязательно стягиваем накидными хомутами. | |
Пробный запуск. При закрытом кране на горелке, открываем подачу с баллона. Подносим зажжённую спичку к соплу и открываем кран подачи газа. | |
Регулировка факела. Поток пламени регулируем, поворачивая кран: против часовой стрелки – больше, по часовой стрелке – меньше. |
Самодельная газовая горелка по эффективности и безопасности применения не хуже покупного инструмента. Уверен, что инструмент, собранный по предложенной инструкции, будет вам полезен.
Датчики-реле контроля пламени АДП-01
Назначение датчика-реле контроля пламени АДП-01 (рисунок) — фиксировать наличие пламени в топке котла, а в случае его исчезновения — формировать сигнал для автоматики защиты.
Рисунок. Датчик-реле контроля пламени АДП-01.
В корпусе небольшого прибора (габаритные размеры датчика составляют 98×56 мм, вес — 125 г) находится печатная плата, на которой смонтированы электронные компоненты. На задней крышке корпуса расположены три светодиода, выходной разъем и переменный резистор, предназначенный для регулировки чувствительности прибора. На передней части корпуса находится чувствительный элемент.
Принцип действия основан на преобразовании излучения и пульсации пламени в электрический сигнал с помощью чувствительного элемента, который после обработки сравнивается с заданным пороговым уровнем. При превышении порога формируется выходной сигнал. Если сигнал больше порогового уровня, на датчике горит зеленый светодиод, если меньше — зажигается красный светодиод: это знак, что пламя отсутствует, а газ подается. Остальные светодиоды служат индикаторами интенсивности пламени.
Для подключения к системе автоматизации каждый датчик снабжен выходом одного из двух типов: это может быть открытый коллектор или контакты реле. Для предотвращения перегрева прибора и, соответственно, выхода его из строя, при установке дополнительно предлагается специальный фланец.
Датчики серии АДП-01 выпускаются уже несколько лет. К настоящему моменту в линейку входят 9 приборов, различающихся, в первую очередь, чувствительными элементами. Это оптические сенсоры (фотодиоды и фоторезисторы), ионизационный сенсор и последняя разработка — ультрафиолетовый сенсор.
Основные виды датчиков
Главный принцип работы всех датчиков – это преобразование сигнала и интерпретация результата для оперативного информирования пользователя об изменениях в работе газового котла.
Газовое оборудование оснащено комплектом дополнительного оборудования, благодаря которому его можно программировать на эксплуатацию в определенном режиме.
Ключевые датчики, отвечающие за безопасность оборудования:
- тяги;
- температуры (уличный и комнатный);
- пламени;
- датчики давления (пресостат);
- перегрева.
Рассмотрим характеристики и особенности эксплуатации каждого из них.
Для определения силы тяги в аппарате используется датчик тяги или термореле для газового котла, он же отвечает за корректное сжигание газа.
Тяга необходима для избавления котла от угарного газа. Нормальная тяга «выводит» продукты сгорания из помещения, а не в него, слабая может спровоцировать затухание колонки и, как следствие, аварию.
Чаще всего такие датчики устанавливаются в дымоуловителе. В случае поломки датчика дым от продуктов сгорания проникает в помещение и создает угрозу безопасности жизни.
Тип датчика зависит от вида котла, к которому хотите его подключить. Первый вид – котлы с естественный тягой, второй – с принудительной.
В устройствах с естественной тягой камера сгорания – открытая. При нормальной работе угарный газ выходит через дымоход, а предохранительный термостат следит за наличием тяги и температурой уходящих газов. В таких котлах используется датчик в виде металлической пластины с прикреплённым к ней контактом.
Принцип его работы заключается в подаче сигнала клапану, который в нужный момент перекроет поток газа к горелке. Внутри термореле расположена металлическая полоска, реагирующая на изменение температуры.
Термореле настраивается на определённую температуру в соответствии с находящимся в котле топливом. Если используется природный газ, то границы температуры будут от +75 °С до +950 °С, в случае применения сжиженного – +75-+1500 °С.
Если происходит сбой в процессе выхода угарного газа (через дымоход на улицу), иными словами, нарушается сила тяги, то приспособление срабатывает. Когда это происходит, температура внутри аппарата повышается, металл расширяется, датчик срабатывает и котёл остывает.
Владельцам газовых аппаратов с естественной тягой стоит обратить внимание на понятие «обратная тяга». Простыми словами – это процесс, при котором угарный газ поступает в помещение, а не выводится в дымоход.
Сбой происходит при колебании температур, некорректном монтаже дымохода или его засорении, также могут повлиять и неточные расчёты размеров дымохода. Независимо от причины возникновения обратной тяги, её необходимо немедленно устранить, дабы избежать отравления угарным газом.
В устройствах с принудительной тягой установлена закрытая камера сгорания и газ выводится за счёт турбины-вентилятора. Здесь используется датчик-пневмореле, выполненный в виде мембраны.
При нормальной тяге мембрана немного деформируется под силой угарных газов. Когда поток становится слишком слабым и мембрана остаётся без движения, контакты разъединяются и газовый клапан закрывается. Такой датчик контролирует и работу вентилятора, и скорость продуктов сгорания.
Если есть сомнения в срабатывании устройства, прерывающего подачу газа в случае его утечки, рядом с газовым оборудованием желательно установить датчик угарного газа. Установка его настойчиво рекомендована, но необязательна.
Причины срабатывания датчика тяги: ошибки в установке котла или дымохода, засорение дымохода или остановка вентилятора (только в аппаратах с принудительной тягой).
Принцип работы и устройства системы автоматизации работы газового котла детально описаны в следующей статье, с которой мы рекомендуем ознакомиться.
Принцип работы прессостата
Прессостат или датчик давления защищает котёл от перегрева во время резкого изменения давления газа или уменьшения тока воды.
Визуально – это стандартный электрический датчик или реле, в большинстве случаев с двумя электрическими цепями-корректировщиками. Именно эти цепи и определяют два ключевых режима работы прибора:
- 1 режим предполагает нормальное давление, во время которого термостатическая мембрана датчика не меняет места расположения и смыкается первая группа контактов. Котёл функционирует в штатном режиме благодаря прохождению тока через эту цепь. Также она всегда связана с общей цепью агрегата.
- 2 режим режим включается при выходе из нормы какого-то параметра системы. Внутри реле смещается и прогибается термостатическая мембрана. Первая цепь контроллера разъединяется, благодаря мембране, а вторая замыкается. Котельное оборудование прекращает корректную работу. Функционирование дежурного режима, информирующего пользователя котла об аварии, активируется с помощью вторичной цепи датчика.
Датчик срабатывает даже в случае малейшего повышения температуры в камере сгорания. Он отслеживает минимальное/максимальное значение силы давления, а также регистрирует начало конденсации влаги в продуктах горения или непосредственно в самом газе.
Источники
- https://generator98.ru/delaj-sam/shema-datchika-ionizacii-plameni.html
- https://pilomaterialy-spb.ru/gorelki/kontrol-plameni-gazovoj-gorelki-svoimi-rukami.html
- https://beton-monolit.ru/gorelki/kontrol-plameni-gazovoj-gorelki-svoimi-rukami.html
- https://BurForum.ru/samodelki/kontrol-plameni-gazovoj-gorelki-shema.html
- https://spb-metalloobrabotka.com/kontrol-plameni-gazovoy-gorelki-svoimi-rukami/